第一章有理数
一.正数和负数
⒈正数和负数的概念
负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数
留意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(假如出推断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简洁推断)
②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。
2.具有相反意义的量
若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:
零上8℃表示为:+8℃;零下8℃表示为:-8℃
支出与收入;增加与削减;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:
比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,削减降低了的数一般记为负数。
3.0表示的意义
⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;
⑵0是正数和负数的分界线,0既不是正数,也不是负数。
二.有理数
1.有理数的概念
⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)
⑵正分数和负分数统称为分数
⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。
留意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2. (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.留意:0即不是正数,也不是负数;-a不肯定是负数,+a也不肯定是正数;p不是有理数;
(2)有理数的分类: ①按正、负分类:
②按有理数的意义来分:
总结:①正整数、0统称为非负整数(也叫自然数)
②负整数、0统称为非正整数
③正有理数、0统称为非负有理数
④负有理数、0统称为非正有理数
(3)留意:有理数中,1、0、-1是三个特别的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数? 0和正整数;a0 ? a是正数;a0 ? a是负数;
a≥0 ? a是正数或0 ? a是非负数;a≤ 0 ? a是负数或0 ? a是非正数.
三.数轴
⒈数轴的概念
规定了原点,正方向,单位长度的直线叫做数轴。
留意:⑴数轴是一条向两端无限延长的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不行;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是依据实际需要规定的。
2.数轴上的点与有理数的关系
⑴全部的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵全部的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)
3.利用数轴表示两数大小
⑴在数轴上数的大小比较,右边的数总比左边的数大;
⑵正数都大于0,负数都小于0,正数大于负数;
⑶两个负数比较,距离原点远的数比距离原点近的数小。
4.数轴上特别的最大(小)数
⑴最小的自然数是0,无最大的自然数;
⑵最小的正整数是1,无最大的正整数;
⑶最大的负整数是-1,无最小的负整数
5.a可以表示什么数
⑴a0表示a是正数;反之,a是正数,则a0;
⑵a0表示a是负数;反之,a是负数,则a0
⑶a=0表示a是0;反之,a是0,,则a=0
6.数轴上点的移动规律
依据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。
四.相反数
⒈相反数
只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。
留意:⑴相反数是成对消失的;⑵相反数只有符号不同,若一个为正,则另一个为负;
⑶0的相反数是它本身;相反数为本身的数是0。
2.相反数的性质与判定
⑴任何数都有相反数,且只有一个;
⑵0的相反数是0;
⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0
3.相反数的几何意义
在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。
说明:在数轴上,表示互为相反数的两个点关于原点对称。
4.相反数的求法
⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);0的相反数还是0;
⑵求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b);留意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5);)相反数的和为0 ? a+b=0 ? a、b互为相反数
5.相反数的表示(方法)
⑴一般地,数a 的相反数是-a ,其中a是任意有理数,可以是正数、负数或0。
当a0时,-a0(正数的相反数是负数)
当a0时,-a0(负数的相反数是正数)
当a=0时,-a=0,(0的相反数是0)
6.多重符号的化简
多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数打算最终化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。
五.肯定值
⒈肯定值的几何定义
一般地,数轴上表示数a的点与原点的距离叫做a的肯定值,记作|a|。
2.肯定值的代数定义
⑴一个正数的肯定值是它本身; ⑵一个负数的肯定值是它的相反数; ⑶0的肯定值是0.
可用字母表示为:
①假如a0,那么|a|=a; ②假如a0,那么|a|=-a; ③假如a=0,那么|a|=0。
可归纳为①:a≥0,═ |a|=a (非负数的肯定值等于本身;肯定值等于本身的数是非负数。)
②a≤0,═ |a|=-a (非正数的肯定值等于其相反数;肯定值等于其相反数的数是非正数。)
3.肯定值的性质
任何一个有理数的肯定值都是非负数,也就是说肯定值具有非负性。所以,a取任何有理数,都有|a|≥0。即 (1)正数的肯定值是其本身,0的肯定值是0,负数的肯定值是它的相反数;留意:肯定值的意义是数轴上表示某数的点离开原点的距离;肯定值是0的数是0.即:a=0 ═ |a|=0;
⑵一个数的肯定值是非负数,肯定值最小的数是0.肯定值可表示为:或 ;即:|a|≥0;肯定值的问题常常分类争论;
⑶任何数的肯定值都不小于原数。即:|a|≥a; ; ;
⑷肯定值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a0),则x=±a;
⑸互为相反数的两数的肯定值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;|a|是重要的非负数,即|a|≥0;留意:|a|·|b|=|a·b|,
⑹肯定值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;
⑺若几个数的肯定值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。
(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)
4.有理数大小的比较
⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的数总比右边的数小,或者右边的数总比左边的数大
⑵利用肯定值比较两个负数的大小:两个负数比较大小,肯定值大的反而小;异号两数比较大小,正数大于负数。
(3)正数的肯定值越大,这个数越大;
(4)正数永久比0大,负数永久比0小;
(5)正数大于一切负数;
(6)大数-小数 0,小数-大数 0.
5.肯定值的化简
①当a≥0时, |a|=a ; ②当a≤0时, |a|=-a
6.已知一个数的肯定值,求这个数
一个数a的肯定值就是数轴上表示数a的点到原点的距离,一般地,肯定值为同一个正数的有理数有两个,它们互为相反数,肯定值为0的数是0,没有肯定值为负数的数。
六.有理数的加减法.
1.有理数的加法法则
⑴同号两数相加,取相同的符号,并把肯定值相加;
⑵肯定值不相等的异号两数相加,取肯定值较大的加数的符号,并用较大的肯定值减去较小的肯定值;
⑶互为相反数的两数相加,和为零;
⑷一个数与0相加,仍得这个数。
2.有理数加法的运算律
⑴加法交换律:a+b=b+a
⑵加法结合律:(a+b)+c=a+(b+c)
在运用运算律时,肯定要依据需要敏捷运用,以达到化简的目的,通常有下列规律:
①互为相反数的两个数先相加——“相反数结合法”;
②符号相同的两个数先相加——“同号结合法”;
③分母相同的数先相加——“同分母结合法”;
④几个数相加得到整数,先相加——“凑整法”;
⑤整数与整数、小数与小数相加——“同形结合法”。
3.加法性质
一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。即:
⑴当b0时,a+ba ⑵当b0时,a+b
4.有理数减法法则
减去一个数,等于加上这个数的相反数。用字母表示为:a-b=a+(-b)。
5.有理数加减法统一成加法的意义
在有理数加减法混合运算中,依据有理数减法法则,可以将减法转化成加法后,再根据加法法则进行计算。
在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。如:
(-8)+(-7)+(-6)+(+5)=-8-7-6+5.
和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的和”
②按运算意义读作“负8减7减6加5”
6.有理数加减混合运算中运用结合律时的一些技巧:
七.有理数的乘除法
1.有理数的乘法法则
法则一:两数相乘,同号得正,异号得负,并把肯定值相乘;(“同号得正,异号得负”专指“两数相乘”的状况,假如因数超过两个,就必需运用法则三)
法则二:任何数同0相乘,都得0;
法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;
法则四:几个数相乘,假如其中有因数为0,则积等于0.
2.倒数
乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a·=1(a≠0),就是说a和互为倒数,即a是的倒数,是a的倒数。
互为倒数:乘积为1的两个数互为倒数;留意:0没有倒数;若 a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.
留意:①0没有倒数;
②求假分数或真分数的倒数,只要把这个分数的分子、分母点颠倒位置即可;求带分数的倒数时,先把带分数化为假分数,再把分子、分母颠倒位置;
③正数的倒数是正数,负数的倒数是负数。(求一个数的倒数,不转变这个数的性质);
④倒数等于它本身的数是1或-1,不包括0。
3.有理数的乘法运算律
⑴乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。即ab=ba
⑵乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即(ab)c=a(bc).
⑶乘法安排律:一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加。即a(b+c)=ab+ac
4.有理数的除法法则
(1)除以一个不等0的数,等于乘以这个数的倒数;留意:零不能做除数,
(2)两数相除,同号得正,异号得负,并把肯定值相除。0除以任何一个不等于0的数,都得0
5.有理数的乘除混合运算
(1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最终求出结果。
(2)有理数的加减乘除混合运算,如无括号指出先做什么运算,则根据‘先乘除,后加减’的挨次进行。
八.有理数的乘方
1.乘方的概念
求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在 中,a 叫做底数,n 叫做指数。
(1)a2是重要的非负数,即a2≥0;若a2+|b|=0 ? a=0,b=0;
(2)据规律 底数的小数点移动一位,平方数的小数点移动二位
2.乘方的性质
(1)负数的奇次幂是负数,负数的偶次幂的正数;留意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .
(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。
九.有理数的混合运算
做有理数的混合运算时,应留意以下运算挨次:
1.先乘方,再乘除,最终加减;
2.同级运算,从左到右进行;
3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
十.科学记数法
把一个大于10的数表示成 的形式(其中, n是正整数),这种记数法是科学记数法
近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
有效数字:从左边第一个不为零的数字起,到精确的位数止,全部数字,都叫这个近似数的有效数字.
混合运算法则:先乘方,后乘除,最终加减;留意:怎样算简洁,怎样算精确 ,是数学计算的最重要的原则.
特别值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.
等于本身的数汇总:
相反数等于本身的数:0
倒数等于本身的数:1,-1
肯定值等于本身的数:正数和0
平方等于本身的数:0,1
立方等于本身的数:0,1,-1.
《七年级数学上册知识点总结第一章》相关文档:
部编版八年级下册语文第2课《春酒》课文原文、知识点及教案09-11
acm知识点09-12
2023年高考生物必背知识点总结(3篇)10-15
2023年高考生物必背的知识点及内容总结10-15
2023高中生物学考知识点总结(3篇)10-15
13个“五年计划”心得与知识点归纳11-10
高中政治《综合探究践行社会责任促进社会进步》微课精讲 知识点 课件教案习题12-23
新媒体写作知识点12-28
如何推动经济高质量发展知识点01-13