《小学数学思想方法》学有所得
我们在老师的指导下着重学习了《小学数学教材概说》第二章的小学数学思想方法中的集合思想、对应思想、符号化思想、极限思想、统计思想、数学模型方法,并分析了这些思想方法在小学数学教材中的渗透。
通过在课堂上对小学数学思想方法的学习,我深刻地认识到学习并研究数学思想方法对于数学教学具有重大意义。首先,懂得数学思想方法有利于教师深刻地认识数学教学内容,正确把握教材体系,以较高的观点分析和处理小学教材。小学教材体系就两条主线:
一、数学知识;
二、数学思想。教师会分析教材,就能明确数学知识;而数学思想是必须掌握了它的方法才能明确为什么要这样写,才能从整体上、本质去理解教材,也才能科学、灵活地设计教学方法,提高课堂教学效率。其次,懂得数学思想方法有利于提高学生的数学素养,促进学生思维能力的培养。最后,有利于对学生进行美育渗透和辩证唯物主义的启蒙教育。
正是因为我意识到懂得数学思想方法对数学学习和教学具有重大意义,所以我利用课余时间学习了小学数学的其他思想方法:类比思想、转化思想、分类思想、代换思想、可逆思想、化归思想、整体思想、比较思想、假设思想、数形结合思想。
其中我对类比思想方法颇感兴趣,对它的了解比较深刻。类比思想是把某一或几个方面彼此一致的新旧事物放在一起相比较, 让学生由旧事物的已知属性推出或猜想新事物也具有相同或类似属性的一种逻辑推理方法, 它包含特殊到特殊, 也包含一般到一般。整个思维过程是以“联想”为前提;以“相似性”为向导;以提出“猜想”为使命;以发现“新规律”为目的。在小学数学课堂教学中渗透类比思想,通过以下几个方面实现:(1)渗透类比思想探究新知(2)渗透类比思想建构知识网络
(3)渗透类比思想激发创新思维(4)渗透类比思想加深对概念的理解。在运用类比方法时应注意以下几点。
(一)类比的结论具有或然性:或者正确,或者不正确,或者不完全正确,对类比的结论能进行辩证的处理。
(二)类比推理需要相当的引导,且学生容易为表面上相似的类比所误导,有位数学家于1992年提出几个克服类比障碍的方法:(1)由学生自己类比。(2)使用多种类比。(3)教师应明确指出类比推理可能失败之处。
(三)要想让学生掌握一些类比思维,作为一名小学数学教师应该做到以下几点:
1、教师应该从自身做起,先要使自己充实起来,这样才能将思想,方法逐渐渗透到学生的思维中,因此教师迫切需要学习和掌握以下知识:(1)补充综合性知识。从今后发展来看,知识也是日趋综合化,很多问题不是只用一门学科知识就能解决和回答的。老师必须在知识上融会贯通,才能更好的在课堂上启发引导学生,实现纵横类比。(2)挖掘教材中的潜在知识。有些知识书本没有明确给出要求,但是必要时要给予补充。例如:苏教版小学数学第六册第94-95页,这部分内容讲的虽是长方形面积,但是从教材中可以发现它隐含了简单的统计思想。教师教学时要注意挖掘这部分知识。
2、老师在教学过程中也要创设一种有培养创造性思维的教学情境。如采用开放式教学。
3、要培养学生的类比思维能力,首先要注意培养学生的归纳总结能力,只有概括出不同知识的相同或相似的性质,才能引导学生进行类比。古代学者韩愈提倡读书学习先要入书,后要出书,要先把书读厚,再把书读薄。这就是说要总结,要概括,要深入认识问题的精神实质。运用类比让学生去发现,去创造,让教学充满创新与活力。懂得了数学思想方法也意识到了它的重要性,那么在教学中,如何将这些方法渗透呢?经过思考我个人有几点看法:(1)提高渗透的自觉性,在知识的形成、发展过程中,渗透数学思想与方法;(2)把握渗透的可行性,在解题思路的探索中,揭示数学思想与方法;(3)丰富数学渗透的人文性,在问题解决方法的探索过程中,激活数学思想与方法;(4)注重渗透的反复性,在知识的总结归纳过程中,概括数学思想与方法。
以上是我在小学数学思想方法这一章学习之后的心得与思考,若有不妥的的地方还请老师指点迷津,谢谢啦!
第二篇:数学思想方法学习心得(推荐)《数学思想方法》心得体会
宁安市东京城镇小学 黄淑伟
我通过对数学思想方法的学习,并结合我在工作中的实际情况,体会到如下心得:
数学的内容、思想、方法和语言广泛渗入自然学科和社会学科,成为现代文化的重要组成部分。数学思想方法是数学学科的精髓,是数学素养和重要内容之一。学生只有领会了数学思想方法,才能有效地应用知识,形成能力,而数学思想方法在教学实践方面的应用,更能加强教师的数学思想方法教学意识,更新教学观念,形成有效的数学思想方法教学策略,提高教学水平。
1.数学思想。数学思想是人们对数学科学研究的本质,及规律的深刻认识。它是指导学习数学,解决数学问题的思维方式、观点、策略、指导原则。它具有导向性、统摄性、迁移性。中学数学教学中的基本数学思想有对应思想(函数思想、数形结合思想),系统与统计思想(整体思想、最优化思想、统计思想),化归与辩证思想(化归思想、转换思想)等。
2.数学方法。数学方法是指某一数学活动过程的途径、程序、手段。它具有过程性、层次性、可操作性。中学数学教学中的基本数学方法:一是科学认识方法:观察与实验,比较与分类,归纳与类比,想象、直觉与顿悟;二是推理论证方法:综合法与分析法,完全归纳法与数学归纳法,演绎法、反证法与同一法;三是求解方程:配方法、换元法、消元法、待定系数法、图象法、轴对称法、平移法、旋转法等。3.数学思想方法。数学思想与数学方法既有差异性,又有同一性。数学方法是数学思想的表现形式和得以实现的手段。“方法”指向“实践”。数学思想是数学方法的灵魂,它指导方法的运用;数学思想与数学方法同属于数学方法论的范畴,它们有时是等同的,并没有明确的界限。由于数学思想与数学方法的这种特殊关系,我们在中学数学教学中把它们统称为数学思想方法。
4.数学思想方法教学。因为数学教学内容始终反映着显形的数学知识(概念、定理、公式、性质等)和隐形的数学知识(数学思想方法)这两方面。所以,在教学中,我们不仅应当注意显形的数学知识的传授,而且也应注意数学思想方法的训练和培养。只有注意思想方法的分析,我们才能把课讲活、讲懂、讲深。“讲活”,就是让学生看到活生生的数学知识的来龙去脉,形成过程,而不是死的数学知识;“讲懂”就是让学生真正理解有关的数学内容,而不是囫囵吞枣,死记硬背;“讲深”是指学生不仅能掌握具体的数学知识,而且也能感受、领会、形成、运用内在的思想方法。正如波利亚强调:在数学教学中“有益的思考方式、应有的思维习惯”应放在教学的首位。加强数学思想方法教学,必然对提高数学教学的质量起到积极的作用。
第三篇:数学思想方法学习心得《数学思想在课堂教学中的体现、应用和推广的探究》课题
研究学习心得体会
商丘市第十六中学:韩远征
我通过对《数学思想在课堂教学中的体现、应用和推广的探究》这一课题的研究和学习,并结合我在工作中的实际情况,体会到如下心得:
数学的内容、思想、方法和语言广泛渗入自然学科和社会学科,成为现代文化的重要组成部分。数学思想方法是数学学科的精髓,是数学素养和重要内容之一。学生只有领会了数学思想方法,才能有效地应用知识,形成能力,而数学思想方法在教学实践方面的应用,更能加强教师的数学思想方法教学意识,更新教学观念,形成有效的数学思想方法教学策略,提高教学水平。
1、数学思想。数学思想是人们对数学科学研究的本质,及规律的深刻认识。它是指导学习数学,解决数学问题的思维方式、观点、策略、指导原则。它具有导向性、统摄性、迁移性。中学数学教学中的基本数学思想有对应思想(函数思想、数形结合思想),系统与统计思想(整体思想、最优化思想、统计思想),化归与辩证思想(化归思想、转换思想)等。
2、数学方法。数学方法是指某一数学活动过程的途径、程序、手段。它具有过程性、层次性、可操作性。中学数学教学中的基本数学方法:一是科学认识方法:观察与实验,比较与分类,归纳与类比,想象、直觉与顿悟;二是推理论证方法:综合法与分析法,完全归纳法与数学归纳法,演绎法、反证法与同一法;三是求解方程:配方法、换元法、消元法、待定系数法、图象法、轴对称法、平移法、旋转法等。
3、数学思想方法。数学思想与数学方法既有差异性,又有同一性。数学方法是数学思想的表现形式和得以实现的手段。“方法”指向“实践”。数学思想是数学方法的灵魂,它指导方法的运用;数学思想与数学方法同属于数学方法论的范畴,它们有时是等同的,并没有明确的界限。由于数学思想与数学方法的这种特殊关系,我们在中学数学教学中把它们统称为数学思想方法。
4、数学思想方法教学。因为数学教学内容始终反映着显形的数学知识(概念、定理、公式、性质等)和隐形的数学知识(数学思想方法)这两方面。所以,在教学中,我们不仅应当注意显形的数学知识的传授,而且也应注意数学思想方法的训练和培养。只有注意思想方法的分析,我们才能把课讲活、讲懂、讲深。“讲活”,就是让学生看到活生生的数学知识的来龙去脉,形成过程,而不是死的数学知识;“讲懂”就是让学生真正理解有关的数学内容,而不是囫囵吞枣,死记硬背;“讲深”是指学生不仅能掌握具体的数学知识,而且也能感受、领会、形成、运用内在的思想方法。正如波利亚强调:在数学教学中“有益的思考方式、应有的思维习惯”应放在教学的首位。加强数学思想方法教学,必然对提高数学教学的质量起到积极的作用。
第四篇:小学数学思想方法培训心得体会感悟思想方法 提高学生素养
——小学数学思想方法培训心得体会
学期末结束之际,县教研室到我镇举行了以“小学数学思想方法分析梳理”为主题的培训活动。
会上,四位专家名师从重要性、定义、内涵、区别与联系、教学策略、现实背景、发展趋势等多个方面对小学数学思想方法做了解读,用理论联系案例分析,或稳重深沉、或生动活泼,都独具特色。这次活动意义非凡,为我镇数学老师们积蓄了知识底蕴,打下了强心剂,更为下学期的数学教学工作夯实了基础。
培训时间仅仅是短短的半天,但“听君一席话,胜读十年书”,专家名师们的解读使我对新课标的新理念有了更深一层的理解,对小学数学思想方法的内涵有了较为深刻的认识,对教材使用、对课堂环节中的渗透策略更明确了,并且了解了中学、小学的教材衔接要点。
原来提到数学思想方法的时候,总是感觉似乎知道一些,总想应用它来指导自己的教学,但是自身对数学思想方法的理解不深透,另外又觉得数学思想方法的渗透教学在课堂教学中短时期难以见成效。所以本人的教学现状中仍然存在一些急功近利的不好现象。
数学名师工作室主持人张富老师一语道破玄机:加强数学思想方法的教学是进一步提高数学教学质量的需要。从数学教材体系看,整个小学数学教材中贯穿着两条主线,一是写进教材的最基础的数学知识,它是明线,一贯很受重视,必须切实保证学生学好。另一条是数学能力培养和数学思想方法的渗透,这是条暗线,较少或没有直接写进教材,但对小学生的成长却十分重要,也越来越引起人们的重视。
在教学中不能只注重数学知识的教学,忽视数学思想方法的教学。两条线应在课堂教学中并进,无形的数学思想将有形的数学知识贯穿始终。重视数学思想方法的教学有利于教师从整体上把握数学教学目的,将数学的本质、知识形成的过程,解决问题的过程展示给学生,教学达到事半功倍。
近年来执教六年级,每每聊到自己的教学,自我感觉还算良好。哪知总是被身在中学的爱人屡屡抨击:“你们这些小学教师很是过分!学生都被你们榨干了油,到中学来怂得不得了!脑筋都不会动动,像根木头!”此话虽不好听,但揭示了某些不良的教学现状:重知识结论、轻知识发生过程;重知识达标评价,轻数学思想形成的评价;重学生眼前的分数利益,轻学生的长远素质发展等。
这个让我很是尴尬的问题在这次培训上得到了镇一中毕老师的解答。他主讲了“中小学教材的衔接问题”,从“中小学数学知识的变化特点”、“中学数学需要什么样的基本功”等方面帮大家揭开了眼前的迷雾。毕老师的幽默调侃中也流露出中学老师们的担忧:中小学教材衔接问题,学生后续力的问题。我不由得想起了一个笑话——中国的家长们总是急:不能让孩子输在起跑线上!于是,不能让孩子输在小学、不能让孩子输在幼儿园、不能让孩子输在胎教上„„言归正传,一开始就催促学生拼命跑的我们是不是该以“人”为本,放缓一些脚步,让孩子们从容领略教育的芳香?是不是“授之以鱼不如授之以渔”?
谈到中、小教材衔接,延伸学生后续力,我想:作为一名六年级教师,研读、通读中小学数学教材是非常有必要的。串点成线,扩线成面,织面成网,构建知识树,方能张弛有度、挥洒自如。我想起数学名家吴正宪老师的故事:她在对数学教学一片空白的情况下,仅用
了一个暑假假期,就把1——12册全套数学教材所有的例题、思考题及有代表性的练习题全部做了一遍。查阅了大量的参考资料,虚心向老师们学习,并根据数学知识的内在联系整理成知识网状图,整理了厚厚的一大本学习笔记。在通读和熟悉全套数学教材的基础上,认真演算发散题、辅导题、竞赛题,草纸摞起来比写字台还要高。另外,能不能让中小学教师也互相听听课?甚至适当地换几天岗?毕竟“他山之石,可以攻玉”。
教材改了多个版本,原来我总是认为作为一名小学教师,只要把自己这本数学书教好就行了,我曾经认为,改来改去也只是“换汤不换药” 而已。县教研室李主任的一番话让我猛如醍醐灌顶!教什么?怎样教?如何评价? 小学数学教学的根本任务是全面提高学生素质!其中最重要的因素是思维素质,而数学思想方法就是增强学生数学观念,形成良好思维素质的关键。如果将学生的数学素质看作一个坐标系,那么数学知识、技能就好比横轴上的因素,而数学思想方法就是纵轴的内容。淡化或忽视数学思想方法的教学,不仅不利于学生从纵横两个维度上把握数学学科的基本结构,也必将影响其能力的发展和数学素质的提高。因此,向学生渗透一些基的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口。
任何一种数学思想方法的学习和掌握,绝非一朝一夕的事,它需要有目的、有意识地培养,需要经历渗透、反复、逐级递进、螺旋上升、不断深化的过程。数学教学内容始终反映着数学知识和数学思想方法这两方面,数学教材的每一章、每一节乃至每一道题,都体现着这两者的有机结合。只要我们在教学中对常用数学方法和重要的数学思想引起重视,大胆实践,持之以恒,寓数学思想方法于平时的教学中,并有意识地运用一些数学思想方法去解决问题,学生对数学思想
方法的认识一定会日趋成熟,一定可以使学生的数学学习提高到一个新的层次、新的高度,也会使数学教学脱离“题海”之苦,使其更富有朝气和创造性。
第五篇:小学数学教学中教学思想方法探讨小学数学教育教学思想探索
摘要:在小学教学中,教师应重视数学思想的融入,提高小学生对数学技能的掌握能力,改善小学生数学教学质量。在小学数学中渗透数学思想,提高小学生对数学知识价值的认知,提高学生思考问题并解决问题的能力成为小学数学教学的关键点。本文对小学数学教育教学的数学常用思想渗透做了简单探索。
关键词:小学数学教学;数学思想渗透;实践应用
一、渗透数学思想方法的必要性
小学数学教材是数学教育教学的显性知识系统,许多重要的公式、法则,教材中只能看到美丽的设计,大部分例题的解法,也只能看到高明的处理,而看不到由观察、试验、分析、归纳、抽象概括或探索推理的学生心理过程。因此,数学思想教育方法是数学教育教学中的隐性知识,小学数学教学应包括显性和隐性两方面知识的教学。如果教师在教育教学中,仅仅依照课本的安排,沿袭从例题、概念到公式、练习这一传统的教学过程,即使教师滔滔不绝、讲深讲透,并要求学生记住结论,掌握解题的类型和方法,这样培养出来的学生也只能是“知识型”、“记忆型”的,将完全背离数学教育教学的初心。
在认知心理学里思想方法它对人们的认知活动起着监控、调节作用,对培养能力起着决定性的作用。学习数学的目的“难道就意味着解题”,解题关键在于找到合适的解题思路、方法,数学思想方法就是帮助构建解题思路的指导思想。因此,向学生渗透一些基本的数学思想方法,提高学生的认知水平,是培养一名学生分析问题和解决问题能力的重要途径之一。
数学知识本身是非常重要的,有人说没有数学就没有科学。但它并不是惟一的决定因素,真正对学生以后的学习、生活和工作长期起关键作用,并使其终生受益的是数学思想方法。未来社会需要大量具有数学意识和数学素质的人才。21世纪国际数学教育的根本目标就是“学会做人”。因此,向学生渗透一些基本的数学思想方法,是未来社会和国际数学教育发展的必然要求。
小学数学教育教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法就是增强学生的学习观念,养成良好思维素质的关键。如果将学生的数学素质看作一个坐标点,那么数学知识、技能就好比横轴上的因素,而数学思想方法就是纵轴的内容。淡化或忽视数学思想方法的教育教学,不仅不利于学生从纵横两个维度上把握数学的基本结构,也必将影响其能力的发展和数学素质的提高。因此,向学生渗透一些基本的数学思想方法,是数学教育教学改革的新视角,是进行数学素质教育的突破口之一。
二、常见的数学思想方法在小学数学教学中的应用
1、化新为旧,给新知寻找一个合适的生长点
任何一个新知识,总是原有知识发展和转化的结果。在实际教学中,教师可以把学生感到生疏的问题转化成比较熟悉的问题,并利用已有的知识加以解决,促使其快速高效地学习新知,而已有的知识就是这个新知的生长点。
如空间与图形中的平行四边形、三角形、梯形等图形的面积公式推导,它们均是在学生认识了这些图形,掌握了长方形面积的计算方法之后安排的,是整个小学阶段平面图形面积计算的一个重点,也是整个小学阶段中能较明显体现转化思想的内容之一。教学这些内容,一般是将要学习的图形转化成已经学会的图形,再引导学生比较后得出将要学习图形的面积计算 例如,平行四边形的面积推导,当教师通过创设情境使学生产生迫切要求出平行四边形面积的需要时,可以将“怎样计算平行四边形的面积”直接抛向学生,让学生独立自由地思考。这个完全陌生的问题,需学生调动所有的相关知识及经验储备,寻找可能的方法,解决问题。当学生将没有学过的平行四边形的面积计算转化成已经学过的长方形的面积。其他图形的教学亦是如此。
1、推导三角形面积时,把三角形转化成平行四边形。
2、推导圆的面积公式时,把圆形转化成长方形。
3、推导圆柱体积公式时,把圆柱体转化成长方体。4。圆锥的体积公式进,把圆锥转化成圆周柱。
2、化繁为简。优化解题策略
在处理和解决数学问题时,常常会遇到一些运算或数量关系非常复杂的问题,这时教师不妨转化一下解题策略,化繁为简。反而会收到事半功倍的效果。
例如:在教学植树问题时,出示例题:同学们在全长100m的小路一边植树,每隔5m栽一棵(两端都栽)。一共要栽多少棵树?
引导学生理解题意,大胆猜测,并开始验证时。看来这个问题值得我们研究,可100米有点长,研究起来不方便,怎样才能使我们的研究更方便呢?把小路缩短,我们就将原来的复杂的问题变得简单了。那下面我们就将小路缩短到20米来研究。
这时,学生在转化思想的影响下,茅塞顿开,将一道生活中的数学问题既形象又有创意地解决了。从这里可以看出:学生掌握了转化的数学思想方法,就犹如有了一位“隐形”的教师,从根本上说就是获得了自己独立解决数学问题的能力。
3、化曲为直,突破空间障碍 “化曲为直”的转化思想是小学数学曲面图形面积学习的主要思想方法。它可以把学生的思维空间引向更宽更广的层次,形成一个开放的思维空间,为学生今后的发展打下坚实的基础。
例如,圆面积的教学,教师在教学过程中,先请学生把圆16等分以后,请他们动手拼成近似的平面图形,即用转化思想,通过“化曲为直”来达到化未知为已知。学生兴趣盎然,通过剪、摆、拼以及多种感官协同参与活动,拼出学过的图形。
4、化数为形
像画示意图、线段图解决问题就是应用了数形结合的方法。数形结合的思想方法将小学数学中一些抽象的代数问题给以形象化的原型,将复杂的代数问题赋予灵活变通的形式,从而给人们思维灵活性的思维迁移训练,这正是反映了数形结合的思想方法解决数与代数问题的有效途径所在。
三、小学数学教学中数学思想方法实现的路径
1、在钻研教材时挖掘数学思想方法
小学数学教材体系有两条基本线索:一条是明线, 既数学知识,另一条是暗线,既数学思想方法。
数学教学中无论是概念的引入、应用,还是数学问题的设计、解答,或是复习、整理已学过的知识,都体现着数学思想方法的渗透和应用。因此,教师要认真分析和研究教材,归纳和揭示其蕴含在数学知识中的数学思想方法。如在“角的分类”中,要挖掘分类的思想方法;在“平行四边形、梯形面积的计算”中,要挖掘转化、化归的思想方法。
2、在教学目标中体现数学思想方法
数学思想方法的渗透,教师要有意识地从教学目标的确定、教学过程的实施、教学效果的落实等方面来体现。在备课时就必须注意数学思想方法的梳理,并在教学目标中体现出来。例如在备“除数是小数的除法”一课时,就要突出化归的思想方法,让学生明确如何把除数是小数的除法转化成除数是整数的除法;在备“比的基本性质”一课时,就要抓住类比的思想方法,明确比的基本性质与分数的基本性质、商不变的性质的联系和区别。
3、在学生课前预习的过程中加以指导
课前预习是学生学习数学知识的必要环节,有利于学生充分利用已有的知识、经验,在自主学习、探究中初步了解知识的形成脉络、结构;了解知识中蕴含的算理、算法;理清编者的意图。在学生预习时只要稍加指导就可以将一些数学思想方法潜移默化的渗透给学生。如,北师大版数学四年级《找规律》。在课前预习时,教师提出明确的预习要求:仔细看书中的主题图,叙述出你从图中知道的信息,弄清数量是多少?你能发现哪些数量之间有关系?你能从中找到规律吗?学生在教师的提示指导下完成了以上的课前预习作业,思考了相关的问题。在课堂新授时只要教师稍加点拨,大部分学生都会理解。教师将探索规律有意识的渗透到教学之前,在教学中就可以充分为学生进行思维的深层次引领。
4结语
古语有云,“授之以鱼不如授之以渔”,在小学数学教学中,数学思想方法的渗透既是教师授学生以“渔”的过程,是提高小学生数学学习效果的有效对策,是教师教学质量的保障。对此,在小学数学教育中,教师应深入教材,提炼其中蕴含的数学思想,并在后续教学过程中渗入数学思想,提高学生的数学学习能力与解题能力,促进学生全面发展。
《小学数学思想方法学习心得》相关文档:
《提高小学数学课堂教学效率》课题结题报告word精品文档9页09-05
小学数学培优辅差的工作总结3篇09-05
小学数学五上教学计划(8篇)09-09
2023学习《小学数学课程标准》的心得体会(通用6篇)09-09
2023年小学数学新课标学习心得体会(通用22篇)09-09